Autoregressive Moving Average Arma Modell


ARMA Unplugged Dies ist der erste Eintrag in unserer Serie von Unplugged-Tutorials, in dem wir uns mit den Details der einzelnen Zeitreihenmodelle vertraut machen, die Sie bereits kennen und die zugrunde liegenden Annahmen hervorheben und die Intuitionen hinter sich heimführen. In dieser Ausgabe beschäftigen wir uns mit dem ARMA-Modell als Eckpfeiler der Zeitreihenmodellierung. Im Gegensatz zu früheren Analyse-Problemen werden wir hier mit der ARMA-Prozessdefinition beginnen, die Eingaben, Ausgänge, Parameter, Stabilitätsbeschränkungen, Annahmen und schließlich einige Richtlinien für den Modellierungsprozess angeben. Hintergrund Nach Definition ist der auto-regressive gleitende Durchschnitt (ARMA) ein stationärer stochastischer Prozess, der sich aus Summen autoregressiver Excel und gleitender durchschnittlicher Komponenten zusammensetzt. Alternativ, in einer einfachen Formulierung: Annahmen Lassen Sie uns näher auf die Formulierung. Der ARMA-Prozess ist einfach eine gewichtete Summe der bisherigen Output-Beobachtungen und Schocks mit wenigen Annahmen: Was bedeuten diese Annahmen? Ein stochastischer Prozess ist ein Gegenstück eines deterministischen Prozesses, der die Entwicklung einer Zufallsvariablen über die Zeit beschreibt. In unserem Fall ist die Zufallsvariable Das ARMA-Verfahren erfasst nur die serielle Korrelation (d. h. Autokorrelation) zwischen den Beobachtungen. In einfachen Worten fasst der ARMA-Prozess die Werte der vergangenen Beobachtungen zusammen, nicht ihre quadratischen Werte oder ihre Logarithmen usw. Die Abhängigkeitsordnung höherer Ordnung erfordert einen anderen Prozess (z. B. ARCHGARCH, nichtlineare Modelle usw.). Es gibt zahlreiche Beispiele für einen stochastischen Prozess, bei dem vergangene Werte aktuelle beeinflussen. Beispielsweise werden in einem Verkaufsbüro, das laufend Anfragen erhält, manche umsatzgewonnen, teils umsatzvermindert und ein paar in den nächsten Monat verschüttet. Als Ergebnis, in einem bestimmten Monat, einige der verkauften Fälle stammen als Anfragen oder sind Wiederholungen Verkäufe aus den vorherigen Monaten. Was sind die Schocks, Innovationen oder Fehlerbegriffe Das ist schwierige Frage, und die Antwort ist nicht weniger verwirrend. Dennoch können wir es versuchen: In einfachen Worten, ist der Fehler Begriff in einem gegebenen Modell ein catch-all Eimer für alle Variationen, die das Modell nicht erklärt. Noch verloren Nehmen wir ein Beispiel. Für einen Aktienkursprozess gibt es möglicherweise Hunderte von Faktoren, die das Preisniveau aktualisieren, einschließlich: Dividenden und Split-Ankündigungen Vierteljährliche Ergebnisberichte Fusion und Akquisition (MampA) Aktivitäten Gesetzliche Ereignisse, z. B. Die Drohung von Sammelklagen. Andere Ein Modell, durch Design, ist eine Vereinfachung einer komplexen Realität, so dass, was auch immer verlassen wir außerhalb des Modells automatisch in den Fehler Begriff gebündelt wird. Der ARMA-Prozess geht davon aus, dass der kollektive Effekt all dieser Faktoren mehr oder weniger wie das Gaußsche Rauschen wirkt. Warum kümmern wir uns um vergangene Schocks Anders als ein Regressionsmodell kann das Auftreten eines Stimulus (z. B. Schock) einen Einfluss auf das aktuelle Niveau und eventuell zukünftige Ebenen haben. Zum Beispiel wirkt sich ein Unternehmensereignis (z. B. MampA-Aktivität) auf den Aktienkurs der Underling-Gesellschaften aus, aber die Änderung kann eine gewisse Zeit dauern, bis die Marktteilnehmer die verfügbaren Informationen analysieren und entsprechend reagieren. Dies wirft die Frage auf: Dont die Vergangenheit Werte der Ausgabe haben bereits die Schocks Vergangenheit Informationen JA, die Schocks Geschichte ist bereits in den letzten Ausgangspegeln berücksichtigt. Ein ARMA-Modell kann nur als reines autoregressives (AR) Modell dargestellt werden, aber der Speicherbedarf eines solchen Systems in unendlich. Dies ist der einzige Grund, die MA-Komponente einzuschließen: um Speicherplatz zu sparen und die Formulierung zu vereinfachen. Auch hier muss das ARMA-Verfahren stationär sein, damit die marginale (unbedingte) Varianz existiert. Anmerkung: In meiner Diskussion unterscheide ich nicht zwischen der bloßen Abwesenheit einer Einheitswurzel in der charakteristischen Gleichung und der Stationarität des Prozesses. Sie sind verwandt, aber das Fehlen einer Einheitswurzel ist keine Garantie der Stationarität. Dennoch muss die Einheitswurzel innerhalb des Einheitskreises liegen, um genau zu sein. Fazit Lasst uns rekapitulieren, was wir bisher getan haben. Zuerst untersuchten wir einen stationären ARMA Prozess, zusammen mit seiner Formulierung, Eingaben, Annahmen und Speicheranforderungen. Als nächstes haben wir gezeigt, dass ein ARMA-Prozess seine Ausgangswerte (Autokorrelation) und Schocks enthält, die es früher in der aktuellen Ausgabe erfahren hat. Schließlich haben wir gezeigt, dass das stationäre ARMA-Verfahren eine Zeitreihe mit einem stabilen langfristigen Mittelwert und Varianz erzeugt. In unserer Datenanalyse sollten wir, bevor wir ein ARMA-Modell vorschlagen, die Stationaritätsannahme und den endlichen Speicherbedarf verifizieren. Für den Fall, dass die Datenreihe einen deterministischen Trend aufweist, müssen wir sie zuerst entfernen (de-Trend) und dann die Residuen für ARMA verwenden. Für den Fall, dass der Datensatz einen stochastischen Trend (z. B. zufällige Wanderung) oder Saisonalität aufweist, müssen wir ARIMASARIMA unterhalten. Schließlich kann das Korrelogramm (d. h. ACFPACF) verwendet werden, um den Speicherbedarf des Modells zu messen, von dem erwartet wird, daß entweder ACF oder PACF schnell nach einigen Verzögerungen abklingen. Wenn nicht, kann dies ein Zeichen der Nichtstationarität oder eines Langzeitmusters sein (zB ARFIMA).Einführung in ARIMA: Nichtseasonalmodelle ARIMA (p, d, q) Prognose der Gleichung: ARIMA-Modelle sind in der Theorie am allgemeinsten Klasse von Modellen zur Prognose einer Zeitreihe, die durch Differenzierung (falls nötig), eventuell in Verbindung mit nichtlinearen Transformationen, wie etwa Protokollierung oder Abscheidung (falls erforderlich), 8220 stationär8221 gemacht werden kann. Eine Zufallsvariable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Reihe hat keinen Trend, ihre Variationen um ihren Mittelwert haben eine konstante Amplitude, und sie wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen Zufallszeitmuster sehen immer im statistischen Sinne gleich aus. Die letztgenannte Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder daß ihr Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieser Form kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn eines offensichtlich ist) könnte ein Muster einer schnellen oder langsamen mittleren Reversion oder einer sinusförmigen Oszillation oder eines schnellen Wechsels im Vorzeichen sein , Und es könnte auch eine saisonale Komponente. Ein ARIMA-Modell kann als ein 8220filter8221 betrachtet werden, der versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Vorhersagegleichung für eine stationäre Zeitreihe ist eine lineare Gleichung (d. H. Regressionstyp), bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und oder Verzögerungen der Prognosefehler bestehen. Das heißt: Vorhergesagter Wert von Y eine Konstante undeine gewichtete Summe aus einem oder mehreren neuen Werten von Y und einer gewichteten Summe aus einem oder mehreren neuen Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, handelt es sich um ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit einer Standard-Regressions-Software ausgestattet werden kann. Beispielsweise ist ein autoregressives Modell erster Ordnung (8220AR (1) 8221) für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt) verzögert ist. Wenn einige der Prädiktoren Verzögerungen der Fehler sind, handelt es sich bei einem ARIMA-Modell nicht um ein lineares Regressionsmodell, da es keine Möglichkeit gibt, 8220last period8217s error8221 als eine unabhängige Variable festzulegen: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen von model8217s keine linearen Funktionen der Koeffizienten sind. Obwohl es sich um lineare Funktionen der vergangenen Daten handelt. Daher müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) abgeschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Lags der stationären Reihe in der Prognose-Gleichung werden als autoregressiveQuot-Terme bezeichnet, die Verzögerungen der Prognosefehler werden als mittlere Mittelwert-Terme bezeichnet und eine Zeitreihe, die differenziert werden muß, um stationär gemacht zu werden, wird als eine integrierte quotierte Version einer stationären Reihe bezeichnet. Random-walk und random-trend Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA Modellen. Ein nicht-saisonales ARIMA-Modell wird als ein quotarIMA-Modell (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten nicht-seasonalen Differenzen ist und q die Anzahl der verzögerten Prognosefehler ist Die Vorhersagegleichung. Die Vorhersagegleichung ist wie folgt aufgebaut. Zuerst bezeichne y die d - te Differenz von Y. Das bedeutet, daß die zweite Differenz von Y (der Fall d2) nicht die Differenz von 2 Perioden ist. Es ist vielmehr die erste Differenz der ersten Differenz. Was das diskrete Analogon einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe anstatt ihres lokalen Takts. In Bezug auf y. Ist die allgemeine Prognose-Gleichung: Hier sind die gleitenden Durchschnittsparameter (9528217s) so definiert, daß ihre Vorzeichen in der Gleichung negativ sind, und zwar nach der Konvention von Box und Jenkins. Einige Autoren und Software (einschließlich der Programmiersprache R) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt werden, gibt es keine Mehrdeutigkeit, aber es ist wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden dort die Parameter mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnt man die Reihenfolge der Differenzierung zu bestimmen (D) Notwendigkeit, die Serie zu stationarisieren und die Brutto-Merkmale der Saisonalität zu beseitigen, möglicherweise in Verbindung mit einer variationsstabilisierenden Transformation, wie beispielsweise Protokollierung oder Entleerung. Wenn Sie an diesem Punkt anhalten und voraussagen, dass die differenzierten Serien konstant sind, haben Sie lediglich ein zufälliges oder zufälliges Trendmodell angebracht. Die stationäre Reihe kann jedoch noch autokorrelierte Fehler aufweisen, was nahe legt, daß in der Vorhersagegleichung auch eine Anzahl von AR-Terme (p 8805 1) und einige MA-MA-Ausdrücke (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die für eine gegebene Zeitreihe am besten sind, werden in späteren Abschnitten der Notizen (deren Links oben auf dieser Seite sind), aber eine Vorschau von einigen der Typen erörtert Von nicht-saisonalen ARIMA-Modellen, die üblicherweise angetroffen werden, ist unten angegeben. ARIMA (1,0,0) erstes autoregressives Modell: Wenn die Serie stationär und autokorreliert ist, kann sie vielleicht als ein Vielfaches ihres eigenen vorherigen Wertes plus einer Konstante vorhergesagt werden. Die Prognose-Gleichung ist in diesem Fall 8230, die Y auf sich selbst zurückgeblieben um eine Periode zurückgeblieben ist. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann würde der konstante Term nicht eingeschlossen werden. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell ein Mittelrücksetzverhalten, bei dem der nächste Periodenblockwert 981 1 mal als vorhergesagt werden sollte Weit weg vom Durchschnitt, wie dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelwert-Wiederherstellungsverhalten mit einer Veränderung von Vorzeichen, d. h. es sagt auch voraus, daß Y unterhalb der mittleren nächsten Periode liegt, wenn sie über dem Mittel dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)), würde es auch einen Yt-2-Term auf der rechten Seite geben, und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten kann ein ARIMA (2,0,0) - Modell ein System beschreiben, dessen mittlere Reversion sinusförmig oszillierend erfolgt, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Weg: Wenn die Reihe Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Wandermodell, das als Grenzfall eines AR (1) - Modells betrachtet werden kann, in dem die autoregressive Koeffizient ist gleich 1, dh eine Reihe mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann folgendermaßen geschrieben werden: wobei der konstante Term die mittlere Periodenperiodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein No-Intercept-Regressionsmodell angepasst werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es nur einen nicht sonderbaren Unterschied und einen konstanten Term enthält, wird er als quotarima (0,1,0) - Modell mit constant. quot klassifiziert. Das random-walk-ohne - driftmodell wäre ein ARIMA (0,1, 0) - Modell ohne konstantes ARIMA (1,1,0) differenziertes autoregressives Modell erster Ordnung: Wenn die Fehler eines Zufallswegmodells autokorreliert werden, kann das Problem möglicherweise durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung - - ie Durch Rückgang der ersten Differenz von Y auf sich selbst verzögert um eine Periode. Dies würde die folgende Vorhersagegleichung ergeben, die umgeordnet werden kann: Dies ist ein autoregressives Modell erster Ordnung mit einer Ordnung der Nichtsaisonaldifferenzierung und einem konstanten Term - d. e. Ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) ohne konstante einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem Random-Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Es sei daran erinnert, daß für einige nichtstationäre Zeitreihen (z. B. solche, die geräuschvolle Fluktuationen um ein sich langsam veränderndes Mittel aufweisen) das Zufallswegmodell nicht ebenso gut funktioniert wie ein gleitender Durchschnitt von vergangenen Werten. Mit anderen Worten, anstatt die letzte Beobachtung als Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt vergangener Werte, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl mathematisch äquivalenter Formen geschrieben werden. Von denen eine die sogenannte 8220-Fehlerkorrektur8221-Form ist, in der die vorhergehende Prognose in der Richtung ihres Fehlers angepasst wird: Weil e t-1 Y t-1 - 374 t-1 per Definition umgeschrieben werden kann : Es handelt sich um eine ARIMA (0,1,1) - konstante Vorhersagegleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung durch Angabe als ARIMA (0,1,1) - Modell ohne passen Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Denken Sie daran, dass im SES-Modell das Durchschnittsalter der Daten in den 1-Periodenprognosen 1 945 beträgt, was bedeutet, dass sie tendenziell hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückbleiben werden. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA-Modells (0,1,1) ohne Konstante 1 (1 - 952 1) ist. Wenn beispielsweise 952 1 0,8 beträgt, ist das Durchschnittsalter 5. Da sich 952 1 1 nähert, wird das ARIMA-Modell (0,1,1) ohne Konstante zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Ansätze 0 wird es ein random-walk-ohne-Drift-Modell. What8217s der beste Weg, um für Autokorrelation zu korrigieren: Hinzufügen von AR-Begriffe oder Hinzufügen von MA-Begriffen In den vorherigen zwei Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Fußmodell auf zwei verschiedene Arten behoben: durch Hinzufügen eines verzögerten Werts der differenzierten Reihe Auf die Gleichung oder das Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz am besten ist Eine Regel für diese Situation, die später noch ausführlicher diskutiert wird, besteht darin, dass die positive Autokorrelation normalerweise am besten durch Hinzufügen eines AR-Terms zum Modell behandelt wird und negative Autokorrelation in der Regel am besten durch Addieren von & agr; MA-Semester. In der Wirtschafts - und Wirtschaftszeitreihe entsteht häufig eine negative Autokorrelation als Artefakt der Differenzierung. (Im allgemeinen differenziert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation bewirken.) Daher wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Begriff begleitet wird, häufiger verwendet als ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) mit konstanter einfacher exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell gewinnen Sie tatsächlich etwas Flexibilität. Zuerst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor von mehr als 1 in einem SES-Modell, das nach dem SES-Modellanpassungsverfahren üblicherweise nicht zulässig ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff in das ARIMA-Modell aufzunehmen, wenn Sie es wünschen, um einen durchschnittlichen Trend, der nicht Null ist, abzuschätzen. Das Modell ARIMA (0,1,1) mit Konstante hat die Vorhersagegleichung: Die Ein-Perioden-Prognosen aus diesem Modell sind qualitativ denjenigen des SES-Modells ähnlich, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise a ist (Deren Neigung gleich mu ist) und nicht eine horizontale Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare Exponentialglättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei nicht-sauren Differenzen in Verbindung mit MA-Begriffen verwenden. Die zweite Differenz einer Folge Y ist nicht einfach die Differenz von Y und selbst von zwei Perioden verzögert, sondern sie ist die erste Differenz der ersten Differenz - i. e. Die Änderung in der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Yt - Yt - 1) - (Yt - 1 - Yt - 2) Yt - 2Yt - 1Yt - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie mißt zu einem gegebenen Zeitpunkt die Quota-Beschleunigung quot oder quotvequot in der Funktion. Das ARIMA (0,2,2) - Modell ohne Konstante sagt voraus, daß die zweite Differenz der Reihe eine lineare Funktion der letzten beiden Prognosefehler ist, die umgeordnet werden können: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten. Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein spezieller Fall. Es verwendet exponentiell gewichtete gleitende Mittelwerte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Reihe abzuschätzen. Die Langzeitprognosen von diesem Modell konvergieren zu einer Geraden, deren Steigung von dem durchschnittlichen Trend abhängt, der gegen Ende der Reihe beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte lineare Exponentialglättung. Dieses Modell ist in den begleitenden Dias auf ARIMA-Modellen dargestellt. Es extrapoliert die lokale Tendenz am Ende der Serie, sondern flacht es auf längere Prognose Horizonte, um eine Notiz von Konservatismus, eine Praxis, die empirische Unterstützung hat einzuführen. Siehe den Artikel auf quotWarum die Damped Trend Werke von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, bei Modellen zu bleiben, bei denen mindestens einer von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) anzubringen, da dies zu Überbeanspruchungen führen kann Die in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen näher erläutert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen lassen sich einfach in einer Tabellenkalkulation implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte von ursprünglichen Zeitreihen und vergangenen Werten der Fehler bezieht. Auf diese Weise können Sie eine ARIMA-Prognosekalkulation einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in Zellen an anderer Stelle auf der Kalkulationstabelle gespeichert sind.

Comments